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ON THE INSTABILITY OF ELASTIC SHELLS AS THE 
MANIFESTATION OF INTERNAL RESONANCE* 

V.V. NOVIKOV 

A large number of internal resonances , sensitivity to small imperfections 
and to a small external non-conservative action are characteristic for a 
number of elastic shells subjected to conservative forces. It is shown 
that, in combination, these three features result in dynamic instability 
of a system, that manifests itself in the existence of a solution of the 
explosive instability type when the deviation from the equilibrium state 
becomes infinitely large ina finite time. A simple method is proposed 
to calculate the ultimately allowableloadbywhichone should be guided 
in designing structurescontainingthin shells. This load calculated 
by a linear model corresponds to the appearance of the first internal 
resonance in the system. The results are illustrated by well-known 
experimental facts. 

Investigation of the stability of loaded elastic shells within the frameworkofalinear- 
ized model yields the so-called upper critical load T1. A result of the solution of the 
stability problem in the large (non-linear static model) is the lower critical load T,. For 
many objects (for instance, a cylindrical shell under uniform lateral compression) T, and T, 
are quite close and in good agreement with the limit load T, achievable in experiment. 

Meanwhile, there is a broad class of systems (among which, for instance, are a cylindrical 
shell compressed along the generatrix, a spherical shell under hydrostatic pressure) for which 
T, and T, differ substantially, where the load TI is quite sensitive to small corrections in 
the system model. A large spread in the values of the limit loads T, is observed in tests. 
It is difficult to exclude the possibility of unexpected failures /1/ when designing structures 
whose elements are such shells. 

Three characteristic features distinguish system of this class from shells for which the 
linearized model yields critical loads close to the experimental values: they are sensitive to 
small imperfections (initial deflection, inhomogeneity of the properties, etc.); the critical 
load depends strongly on the nature of the loading: internal resonances appear in a system 
starting at a certain value of an increasing load /2/. 

These features explain why examination of the stability problems of such systems in the 
small or in a non-linear static formulation is not successful. The need for a dynamic approach 
to stability problems is also noted in experimental investigations of loaded shells /3/. 

The absence of at least one of the factors mentioned results in the upper critical load 
in experiment. Thus, a load close to TX /4, 5/ is reached on cylindrical shells compressed 
in the axial direction because of careful shell fabrication and carrying out the experiment. 
Investigation of the stability in the small for such shells also yields a satisfactory result 
/6/. 

We will turn to the simplest mechanical model containing the three features noted in 
order to show that in combination they can result in a dynamic instability that appears in an 
unbounded solution of the explosive instability type when the deviation from the equilibrium 
state becomes infinitely large in a finite time. We will then discuss the possibility of 
utilizing the results of the investigation of this model in shell analyses. 

1. A system is considered that consists of three concentrated masses and massless stiff 
rods at whose hinge-connection sites an elastic restoring moment acts. The massesare fastened 
to non-linearly elastic springs, such that the expression for the elastic force includes linear 
and quadratic terms in the deviation. There is an initial deflection CPOK 1 (Fig.1). One 
end of the system is hinge-supported, while a force having a constant component T and a non- 
conservative part dT is applied to the other in a vertical direction. 

Using the Lagrange method, we obtain the following system equations of motion: 

3%" + QJP," + 'ps" +,&$ - 9% +x (3qp, + 29, + rps)- W) 
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Here terms not higher than cubic in the angles vi are present since we will later limit 

ourselves to a quadratic non-linearity in going over to the equations in deviations. The 
quantity t, = (m12ce1)‘l* is selected as the time scale and the notation x= X-12c-', x1 = k,l"c-', 7 : 

TlcC, is introduced where c is the spring elasticity factor at sites of hinge connection of 

the rods, and the parameters k and h_, characterize the springs connecting the mass to a fixed 

support. 

The generalized forces Qi have a form similar to the 
T+AT expressions for the conservative load components on the left-hand 

sides of (l.l),the only difference being that z is replaced by 

We consider the non-conservative force ilr = AT&l related 

to the following way to the vertical velocity component of the 

: 
upper mass 

AT’ + ~AT = -PAX, (a, f3 > 0) 

I * 

if 

Apart from quadratic terms in the deflection of the rods from 

the vertical, the change in the upper mass coordinate is qiven by 

: 
the relationship 

T Ax3 = l!2 ('F12 + %" + 'F3?) + 'DaVn 

'Y, The loading unit can be a gas-filled cylinder with two 

pistons, say, one of which is connected to the mass m,.A definite 
gap between the pistons corresponds to the load 7'. By virtue of 

is followed by the second 
\ : 

the inertia of the unit, a change in .x3 

Fig.1 
piston with a lag. A small non-conservative load thus occurs. 

The construction of the loading unit is not so important in 

this analysis. It is essential that a small non-conservative 

force (- 'hj") that is ordinarily missing in the linearized or non-linear static models being 

studied, acts on the system together withthe conservative load 7'. 

Because of the initial deflection under the load 7.7-0 the system has an equilibrium 

state that differs from the original (shown in Fig.1). Linearizing (1.1) near the equilibrium 

state, the natural frequencies and their corresponding system vibration modes can be determined. 

The case when internal resonance is observed in the system, i.e., the frequencies are 

connected by the relationship (11~ ;m 0) w3 is of interest. A further analysis is performed 

for x 2.5, 7 ~-. 2.08. to which the frequencies ,,I~ 7 O.!J?. CPI~ z 1.52. clJa 2.4'1 correspond. We 

note that all the quantities wj arerealfor K 2 .rl under loads T from the interval /O, 2. 

59/. 
We will change to normal coordinates FC,~, t:c* 1. (Since all the qj are assumed small, 

the parameter t' is extracted). Eqs.(l.l) are transformed to the form 

4;. + oj"yj = &fj (C/,,), j = 1, 2, 3, (1.2) 

where jj are quadratic functions of (7r (k ~~ 1, 2, 3) and their conjugates. 

We limit ourselves to just the "resonance" terms in the expressions for fl 

II = i 33.55D,cpo2q, + q2*ya [Cl.21 x1 + 14.33~p,, T 
icp, (I.67 D, - 1.22 D,* -t 3.49 D,)] 

j2 == i 2.98D,cpozq2+ q1*q3 [0.2x, + 1:3.:3‘2 g, :- 
iry, (-1.56D,* + l.llD, + :3.18D,)I 

j3 = i20.08D3~02q3 -I- ylq,[O.ilx, + 47.989, +m 
icp, (5..XD, $- 4.080, + il.MD,)I 

Dj : -fi (CL - iwj)(a2 - o,~)~’ 

We seek the solution of system (1.2) in the form 
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qj = Aj (11 = Et)OXp (i63jt) + EWJ (t) 

After substituting qj into the equations andequatingterms of identical order in E we 

obtain 
Wj” + WjzWj = -2iWj(dAj/d~~)eXp (iojtf + fj (At exp (iOi,C)) 

The error wj will not increase if the right-hand side of this relationship is orthogonal 
to the eigenfunctions of the problem for e = 0. Then the equations for the amplitudes will 

be the following 
%iCOj(dA j ~dQ) = (fj (Akexp (iOkt)) exp (-iwjt)) 

where (.,.) denotes the average in the time C"> Th. (Th. = "n:W& 
After taking the averaqe and going over to the real amplitudes and phases ai, 6, by 

using the change of variables 

A i = Ul (I Oj 1 1 0~ I)-“z exp ((6,): j # k, j, k # 1 
we obtain the equations 

(1.3) 

oj = -a&pzJ - ilEj -t- 'co (5) - Bni)l, i = 1, 2, 3 
E, = 0.22, f* == 0.07, g3 = 0.15 

5, = 7.78, 62 = 4.4, gs = 9.84 

n, = 0.83d, + I.014 f 4.6ld,, n, = O.&d, + 0.56d, + 2.56d, 

% = l.O5d, + 1.27d, f 5.83d,, m, = 0.9d, - 0,66d, + 1.89d, 

m-, = -0.5fd, f 0.37d~~~.O5d~, nz3 = ~.~4~~0.84d*~2.39d~ 

Xj = -Yja@+)o'dj, ~1 =z 18.19, '~1 = 0.98, vg = 4.12 

d, = (a2 + wj”)-‘. 

we note that when changing to real amplitudes and phases, thereare still two equations 
in addition to (1.3) by which the quantity 6, can be determined after (1.3) has been solved. 

When there is no initiai deflection (cp0 =O, enzC ~12, es = 3s/2) the systemisconservative. 
only energy exchange between the modes is possible in it. An analogous situation holds for 
tpo+ 0, a = 0 or (and) p = 0. 

The initial deflection and the small (-qj2) non-conservative force from the loading unit 
(a+O, @+O) jointly produce conditions when an explosive instability becomes possible in 
the system: the amplitudes of all the resonantly associated modes grow, where the solution 
becomes unbounded in the finite time t, similar to (t--t)-' /8/. 

%,,@ 
Without taking account of terms in (1.3) that contain XJt 

the necessary condition for the existence of a solution of the 
3 system of an explosive instability type is the arrangement of 

all eJ in one half-plane. Taking account of these terms (they 
are responsible for energy dissipation in the model under con- 

2 sideration) as a function of the magnitudes of the parameters 
Xj results in either an increase in the time t, or in the 
impossibility of an explosive instability /8/. 

1 The time dependences of the amplitudes Ul (the solid lines) 
and the phases CD (the dashed line) obtained by numerical 

fl 5 fD 'I 
integration of system 11.3) for a = 1, fi = 1, o. = 0.01, to which 

Fig.2 
fjr = 3x12 - 3 06110"~, 8, = 3n/2 -f- 1.36~10‘~, es = n/2 $ 

5.36x10-= 

x1 = -9.82x10-*, xe = -0.3x10-', xs = -0.59x10-' 

correspond and for the initial conditions a, (0) = es(O) = aa( 1, Q(O)= n are presented in 
Fig.2. All the ej are in one half-plane @I,,- 6,(n). In the case under consideration this 
condition is not only necessary but also sufficient for the system (1.3) to have a solution 
of the explosive instability type. 

Let us estimate the time t,. Since one of the amplitudes grows fivefold in the time 
-2Oet, for e = IO-* the time t, corresponds to -5x10* vibration cycles at the lower 
frequency. 

Calculations performed without taking account of energy dissipation show that the nature 
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of the amplitude growth for the given parameters a, p,'po does not vary so noticeably. 
Hence, we have shown that an explosive instability is possible in the system. It is due 

to an internal resonance, an initial deflection, and a small non-conservative force. 
It can be seen that for all a E [O, 2.591 the system under consideration is stable in 

the small with the exception of the resonance domain, a small neighbourhood z = 2.08. 

2. We will use the example of a cylindrical shell compressed in the axial direction to 

discuss the possibility of utilizing the results of studying a three-mass model in the Sol- 

ution of problems of the stability of loaded shells. 

We direct the I and y coordinate lines, respectively, along the generatrix and arcs of 
the cylindrical shell. Let 1~ (3, Y, 4 denote the shell deflection and let us assume that 
there is no initial deflection. 

The equations of shell vibrations have the form /9/ 

(2.1) 

where I#I is the dynamic stress function in the middle surface, D is the cylindrical stiffness, 

fi, 4 h are, respectively, the radius, length, and thickness of the shell, p is the density, 

E is the modulus of elasticity, and IJ is Poisson's ratio. 

We are interested primarily in the normal vibrations modes to which significantly lower 

frequencies correspond than to the tangential modes. Consequently, in the problem under con- 

sideration the law of dynamic stress function variation with time is determined by the 

deflection, and the influence of the motion in the middle surface on cf, should be neglected, 

i.e., the terms containing the time derivatives in the second equation of (2.1) should hence- 

forth not be taken into account. 
Assuming that simple supprt conditions are satisfied at the shell endfaces, we approxi- 

mate the deflection by the expression 

w (x, y, t) = 2 A,, (t) sin mS sin@ 
m. n 

(5 = xnll, 5 = ylR; O<x< 1, O< y < ~JCR) 

As the load T increases, starting with a certain value T, internal resonancesarepossible 

in the system, which is associated with the singularity in the behaviour of the spectrum 

ml(T) in problems of this class: the frequencies corresponding to modes with a very large 

nu,mber of inflections undergo the greatest variation. Even the approximate estimate where 

only axisymmetric modes were taken in the analysis yields 102 -103 resonance points /2/ in 

the interval IT,, Til. 
For a certain load T let the internal resonance conditions be satisfied, which for a 

system with distributed parameters have the form 

m, -+- mp = m,, n, + nz = n,, or+ wa = WS 

After substituting the expression for W(X, y, t) fromthe second Eq.(Z.l), we find the 

stress function Qt (x, Y, t) and substitute it into the first equation of the system. Then 

using the Galerkin method, we find equations for the amplitudes of the modes in resonance, 

apart from quadratic terms 

(2.2) 



801 

we note that the upper critical load is calculated from the expression for 0j2. Setting 

0~2 = 0, and minimizing T by z1 = (ajlb,)“, we find T, = EhR-' 13 (1 - c+)]-‘12. 
After taking into account the initial deflection and the small non-conservativeness of 

the loading unit, problem (2.2) reduces to system (1.3) considered earlier. Therefore, the 

results of investigating the three-mass model have a direct relation to the stability problems 

of loaded shells. 

The main deduction is that the problems of the dynamics of elastic shells loaded by con- 

servative forces allow a solution of explosive instability type when small imperfections and 

a small external non-conservative action are taken into account. 

When examining specific structures containing thin shells, it is not realistic to count 

on sufficient information about their imperfections (particularly the initial deflection) 

and the nature of the loading; consequently, one should consider the load T* at which the 

possibility of an explosive instability first occurs, as the greatest allowable load. This 

load corresponds to the appearance of the first internal resonance in the system and is 

determined from examination of a substantially simpler linear conservative model than the 

original. 

In practical computations the load for which the branches of Oj(T) first intersect 

should be taken as T,. In the neighbourhood of this value of the load there are slightly 

differing frequencies corresponding to adjacent m, )2 which together with the small low 

frequency satisfy the resonance conditions. 

1n /2/ where only axisymmetric modes were taken into account (cj = 0), the loads T, was 

calculated as the maximum value of the load when the condition 

for all bla. 
dw,zjdb,z> 0 is satisfied 

In the general case (c,# 0) th e critical load T, agrees with that found for the axisym- 

metric modification. This can be seen if a new variable U is itroduced in place of cj2 such 

that cjz = abi2. Then the equivalence of the case a#0 to the simultaneous increase of 

the shell thickness and radius by a factor of 1 $ a follows from the expression for 01' 

Since the ratio of these quantities is in the expression for T, we arrive at the result of 

the axisymmetric problem. 

The ratio of T, to the upper critical load equals 

We note that it differs somewhat from that presented in /2/ where a mistake is made in 

the expression for oj2. 

We show in Fig.3 are T1,T. for 0 = 0.3 (usually used 
1.0 in computations) and the domain of experimental critical 

loads (shaded). The load T, agrees with the lower boundary 

of this domain in a broad range of R/h. The spread in the 

d.5 
experimental data is explained by the fact that the presence 

of internal resonances in the system is just the necessary 

condition for explosive instability. The limit load for a 
specific system is also governed by its small imperfections, 

the nature of the loading and the initial conditions. For 
0 I 2 +7-J large shell thickness the lower boundary T. does notcoincide 

with the calculated load T, since additional terms must be 
Fig.3 introduced in the system (2.1) for these h and therefore, the 

expression for OJ* by which T, is calculated changes. 
In addition to the longitudinally compressed cylindrical shell, there is considerable 

experimental material in the literature on spherical shells under hydrostatic pressure (/9/ 
for instance). An analytic expression can also be obtained for the frequencies foraspherical 
shell and therefore the ratio between the load T, corresponding to the appearanceofinternal 
resonance in the system and the upper critical load, having the form 

can be calculated. 
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Comparison of the experimental data T,(R/h) with the calculated load T, results in the 
deduction that T, is close to the lower boundary of the T, domain (as in the case of the 
longitudinally compressed cylindrical shell). 

In conclusion, we note that the approach proposed in this paper to problems of the 

stability of loaded shells supplements the static investigations of shells (/4, 9/, say) and 

enables us to clarify the behaviour of real shells in a number of extraordinary cases. Indeed, 

there is still one stable equilibrium state in addition to the original in the (T2, T,l load 
range for systems in this class. Finite shell deflection corresponds to it. The transition 
to this equilibrium state of a shell is completed by a jump for T = T1 (in the idealized 
model). From the viewpoint of steady representations for T< T, small deviations do not 
take the shell out of the domain of attraction of the original equilibrium state. The 
presence of internal resonance, small non-conservative forces, and imperfections of the shell 

can result in rapid growth of these deflections, after which the jump follows. 

The author is grateful to G.G. Denisov for his interest. 
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